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Abstract 

Floods are one of the most prevalent and costliest natural hazards globally. The safe transit of people and goods dur-
ing a flood event requires fast and reliable access to flood depth information with spatial granularity comparable to 
the road network. In this research, we propose to use crowdsourced photos of submerged traffic signs for street-level 
flood depth estimation and mapping. To this end, a deep convolutional neural network (CNN) is utilized to detect 
traffic signs in user-contributed photos, followed by comparing the lengths of the visible part of detected sign poles 
before and after the flood event. A tilt correction approach is also designed and implemented to rectify potential inac-
curacy in pole length estimation caused by tilted stop signs in floodwaters. The mean absolute error (MAE) achieved 
for pole length estimation in pre- and post-flood photos is 1.723 and 2.846 in., respectively, leading to an MAE of 4.710 
in. for flood depth estimation. The presented approach provides people and first responders with a reliable and geo-
graphically scalable solution for estimating and communicating real-time flood depth data at their locations.
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1 Introduction
Among weather-related disasters, floods are among 
the most frequent events causing billions of dollars 
of damage every year worldwide (Xie et  al., 2017). 
In the U.S. alone, there have been an average of 16.2 
weather and climate disasters annually between 2015 
to 2020 (Smith, 2021), and nearly one-third of peo-
ple who live in coastal areas are exposed to elevated 
coastal hazard risks (United States Census Bureau, 
2019). In 2021 alone, 223 flood events occurred in the 
U.S. (Centre for Research on the Epidemiology of Dis-
asters (CRED), 2022) which surpassed the above-men-
tioned annual average, leading to a sharp increase in 
the severe impacts of floods on communities and the 
built environment. For instance, the estimated cost for 
Hurricane Harvey in 2017 was $198 billion, exceeding 

that of Hurricane Katrina at $158 billion in 2005 (or 
roughly $194 billion in 2017 dollars) (Hicks & Bur-
ton, 2017). In November 2021, a major rainfall event 
induced a series of floods in northern parts of the U.S. 
state of Washington and southern parts of the Cana-
dian province of British Columbia. In British Colum-
bia, this flood caused record-breaking insured damage 
of $450 million (Insurance Bureau of Canada, 2021). 
Floods also cause significant damage and loss in other 
parts of the world. In central China, the July 2021 
flooding killed almost 100 people and resulted in more 
than $11 billion in economic losses (Wang, 2021). In 
the same year, deadly floods in Germany resulted in 
$40 billion of economic loss. In Belgium, the 2021 
floods were the worst in over 100  years, resulting in 
an estimated damage of $3 billion (Rodriguez Castro 
et  al., 2022). Past research has identified the key rea-
sons behind intense and widespread floods to be cli-
mate change (Alfieri et  al., 2017; Arnell & Gosling, 
2016; Bjorvatn, 2000; Bowes et al., 2021; Sahin & Hall, 
1996; Ward et  al., 2014a, b), deforestation (Bradshaw 
et al., 2007; Sokolova et al., 2019), growing population 
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(Changnon, 2000; Winsemius et  al. 2016; Wing et  al. 
2018), and rapid urbanization (Singh & Singh, 2011; 
Suriya & Mudgal, 2012). A study by Forzieri et  al. 
(2017) has shown that weather-related natural hazards 
could affect about two-thirds of Europe’s population 
annually over the next century. Huang et  al. (2015) 
investigated the combination of different climate sce-
narios in the five large basins in Germany and found 
that most rivers in the study area could experience 
more 50-year floods.

The monetary damage of floods to the infrastructure 
and housing stock is primarily calculated using key 
indicators such as water depth and building character-
istics (Figueiredo et al., 2018; Gerl et al., 2016; Romali 
& Yusop, 2021). For example, the depth-damage func-
tion, used by the U.S. Army Corps of Engineers and the 
Federal Insurance Administration, estimates structural 
damages as a percentage of structure’s value for a given 
water depth above or below the first occupied level of 
the structure (Davis & Skaggs, 1992; Wing et al., 2020). 
Likewise, in the aftermath of a flood event, effective 
response operations are highly dependent on having 
access to rapid and accurate flood depth data. Flood 
mapping systems are sought to provide flood depth 
data in a particular region or zone over the temporal 
scale. In the U.S., flood maps prepared by the Federal 
Emergency Management Agency (FEMA) are com-
monly used for estimating the extent of flood inunda-
tion. However, approximately 75% of FEMA flood maps 
have not been updated in the last five years, and 11% 
of them are significantly outdated (dating back to the 
1970s and 80 s) (Eby and Ensor, 2019). While advances 
in urban sensing and computing technologies has led 
to an uptake in the use of sophisticated remote sens-
ing methods (e.g., monostatic radars) for flood depth 
mapping, the communication of captured data to the 
public is often restricted or lagged (Chew et al., 2018). 
Overall, current flood mapping systems have key limi-
tations, and existing data sources are sparse and not 
inclusive of many at-risk communities (resulting in 
data deserts) (Cutter et al., 2003; Van Zandt et al., 2012; 
Forati & Ghose, 2021; Arabi, 2021). This makes current 
flood mapping methods inefficient for delivering high-
resolution, accurate, and real-time flood depth data to 
diverse stakeholders who live in flood-prone regions. 
This paper proposes a novel approach that enables the 
on-demand estimation of floodwater depth using deep 
neural networks in photos depicting submerged traf-
fic signage. Compared to other flood mapping systems, 
the key advantage of this method is its simplicity (ease 
of use), accuracy, speed, and coverage (by significantly 
increasing the number of points where floodwater 
depth can be calculated and logged).

2  Literature review
2.1  Existing flood inundation mapping systems
Much of the information utilized for urban flood depth 
mapping is extracted from water level sensors and gauges 
(Crabit et  al., 2011), remote sensing data (Feng et  al., 
2015; Perks et al., 2016), crowdsourcing platforms (Wang 
et  al., 2018), and video surveillance (Liu et  al., 2015). 
However, conventional gauge-based ground monitoring 
systems could result in uneven coverage of floodplains, 
and accrue significant sensor installation and operation 
costs (Dong et al., 2021; Lo et al., 2015). Also, since the 
estimated flood depth in each station is measured relative 
to the station level, further comprehensive data pooling 
is required for flood mapping (Lo et al., 2015). Thanks to 
recent advancements in remote sensing, flood maps can 
be generated with high-resolution spatial and temporal 
data. Examples include terrain data from light detec-
tion and ranging (LiDAR) (Brown et  al., 2016), radar-
based precipitation depths and synthetic aperture radar 
(SAR) fine-resolution images (Schumann et  al., 2011), 
advanced streamflow measurement (Merwade et  al., 
2008), digital elevation model (DEM) with an X-band 
sensor (e.g., TerraSAR-X and COSMO-Skymed Constel-
lation) (Strozzi et  al., 2009; Pulvirenti et  al., 2011), and 
short-wavelength microwaves transmitted by satellites 
(Frappart et al., 2005). Despite some advantages, the reli-
able application of these methods can be hindered by 
several factors. For example, data collected from satellites 
often suffer from restrictions such as orbital cycles and 
inter-track spacing of satellite movements (Stone et  al., 
2000). Also, while LiDAR terrain data can be used as a 
standalone flood inundation mapping approach, filtering 
LiDAR data in dense urban areas is challenging due to 
the complex urban landscape (Wedajo, 2017), therefore 
such data must be juxtaposed with cross-sectional field 
surveys (Klemas, 2015), which demands additional effort 
to combine and leverage multiple data streams to gener-
ate a complete map (Stone et  al., 2000; Kamari & Ham, 
2021). Another major problem with LiDAR-based flood 
mapping is the difficulty of matching LiDAR data with 
hydraulic models especially in high flood depth (Mer-
wade et al., 2008). Near-real-time SAR flood maps (Shen 
et al., 2019) can be generated using a radar-based precipi-
tation approach based on data collected from the Next 
Generation Weather Radar (NEXRAD) system which 
currently comprises 160 sites across the U.S. (National 
Oceanic and Atmospheric Administration, 2022). 
Although radar-based precipitation data uses sophis-
ticated distributed hydrological models, a significant 
degree of uncertainty is associated with the outcome due 
to the use of variables that are averaged out over space 
and time (Alinezhad et  al., 2020; Merwade et  al., 2008; 
Zhou et al., 2021). In contrast to the inherent uncertainty 
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in hydraulic and hydrologic models, probability-based 
predictors such as the Bayesian approach (Beck & Katafy-
giotis, 1998) used in conjunction with SAR imagery track 
changes in flood water levels, and use adjustable weights 
to progressively update model’s estimates and improve 
prediction accuracy (Hsu et al., 2009).

Another practical barrier to using conventional remote 
sensing is its insensitivity to data variations and noise 
in densely vegetated areas, adverse weather, and humid 
tropical regions with excessive cloud coverage (Asner 
2001). Smooth impervious surfaces and shadows in urban 
areas can also cause over-detection in SAR imagery, thus 
requiring more information to describe the geometry, 
orientation, building materials, as well as the direction of 
radar illumination (Ferro et  al., 2011; Shen et  al., 2019). 
Limited access to continuous monitoring, coupled with 
observing flood depth in only sparsely-located fixed 
points are among other barriers to the effective applica-
tion of most remote sensing methods (Lo et al., 2015). In 
general, the accuracy of existing flood mapping systems 
is dependent on several factors such as the method used 
for collecting and describing topography, estimate of the 
design flow, inherent model uncertainties, noise in input 
data, and the calibration approach (Merwade et al., 2008; 
Vojtek et al., 2019).

In recent years, researchers have investigated the pros-
pect of quantifying flood depth through visual exami-
nation and detection of key objects in images using 
computer vision and artificial intelligence (AI). Most 
object detection models are one-stage or two-stage 
detectors (Zhan et al., 2021). Jiang et al. (2019), for exam-
ple, measured the waterlogging depth in videos using 
single-shot object detection (Liu et  al., 2016) by com-
paring detected ubiquitous reference objects (e.g., traf-
fic buckets) before and after a flood event, achieving a 
root mean squared error (RMSE) of 2.6 cm (or 1.02 in.) 
with an average processing time of 0.406  s per video 
frame. Cohen et  al. (2019) estimated the depth of flood 
for coastal (using a 1-m DEM) and riverine (using a 10-m 
DEM) locations and reported an average absolute differ-
ence of 18–31 cm (or 7–12 in.). Moy de Vitry et al. (2019) 
re-trained a deep convolutional neural network (CNN) 
on videos of flooded areas to detect floodwater in surveil-
lance footage (Liu et al., 2015). However, the applicability 
of this approach was limited by the field of view of the 
surveillance cameras. Chaudhary et al. (2020) estimated 
flood depth through analyzing submerged objects in 
images collected from social media, and comparing them 
with the average human height (as a reference object). In 
their method, however, the distance between the location 
of the camera and the location of detected objects was 
not considered, which increased the error of projecting 
extracted flood depth data onto flood inundation maps. 

To remedy this problem, they also proposed (but did not 
accomplish) to use a computer vision technique called 
monoplotting (Golparvar & Wang, 2021) to calibrate 
the data based on the pixel-level correlation between 
DEM and the input photo (Marco et al., 2018). Park et al. 
(2021) estimated flood level with a precision of over 89% 
by analyzing images of submerged vehicles, and obtained 
a mean absolute error (MAE) of 6.49 cm (or 2.5 in.). Pally 
and Samadi (2021) used YOLOv3 (you-only-look-once 
version 3), Fast R–CNN (region-based CNN), Mask R–
CNN, SSD MobileNet (single shot multibox detector 
MobileNet), and EfficientDet (efficient object detection) 
to detect the water surface in images of flooded areas. 
Hosseiny (2021) used U-Net (a CNN model) to estimate 
flood depth by comparing images of rivers, and achieved 
a maximum error of 2.7 m. Other proposed methods of 
flood depth estimation include taking bridges as meas-
urement benchmarks in a study by Bhola et  al. (2018), 
drawing a hypothetical line on walls visible in the cam-
era footage (Sakaino, 2016), using a ruler in riverine 
areas (Kim et  al., 2011), and comparing virtual markers 
determined by the operator in video frames (Lo et  al., 
2015). However, past research has particularly relied on 
in-situ measurements and site-specific calibration which 
require the pre-installation of target objects in the study 
area (Moy de Vitry et al., 2019). In our past work (Aliza-
deh et al., 2021; Alizadeh Kharazi & Behzadan, 2021), we 
proposed a method to remotely estimate flood depth by 
analyzing images of traffic signs as physical landmarks, 
considering that traffic signs are omnipresent and have 
standardized sizes in most parts of the world. In a nut-
shell, a combination of deep learning and image process-
ing techniques was utilized to estimate flood depth by 
comparing crowdsourced photos of traffic signs before 
and after flood events, yielding an MAE of 12.62 in. for 
floodwater depth estimation on our in-house Blupix 
v.2020.1 dataset. Specifically, we utilized Mask R-CNN 
(which was pre-trained on the Microsoft COCO dataset 
(Lin et al., 2014) for detecting stop signs in photos. Con-
sequently, image processing models (e.g., Canny Edge 
detection and Hough transform) were utilized to detect 
sign poles by searching the area underneath the traf-
fic sign for near-vertical lines. The accuracy of the pre-
vious approach was, however, limited by factors such as 
image quality, noise, illumination, and excessive degree of 
pole tilt. In this paper, we expand our previous work by 
using semantic segmentation for detecting not only the 
traffic signs but also their poles aiming at increasing the 
accuracy and computational speed of the model. Spe-
cifically, this paper improves the pole detection outcome 
by training a neural network on 800 images with anno-
tated stop signs and poles under various visual condi-
tions. The performance of the new approach is presented 
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on an in-house dataset which demonstrates a significant 
improvement in terms of accuracy and computational 
speed. To generate a high-resolution flood inundation 
map using the proposed approach, a large number of 
images should be collected and analyzed. Therefore, a 
crowdsourcing application (named Blupix (Blupix, 2020) 
was developed and launched as part of the preliminary 
work that led to this paper. The primary purpose of this 
application is to facilitate the collection of flood photos 
by engaging ordinary people in affected areas (particu-
larly in underserved neighborhoods and municipalities), 
and create an easy-to-use interface to deliver near real-
time flood depth information to various stakeholders and 
communities. Moreover, a mobile app was developed 
with a built-in computer vision model to enable real-
time estimation of flood depth in urban areas (Alizadeh 
& Behzadan, 2022a). In the field of disaster response and 
mitigation, crowdsourcing is an invaluable tool where 
people and stakeholders can report and share needed 
information collected from their surroundings, thus 
enhancing the spatiotemporal scalability and inclusive-
ness of the input data (Assumpção et al., 2018; See, 2019).

2.2  Convolutional neural networks for object detection
To detect target objects in an input image, various object 
detection methods have been previously used. Conven-
tionally, approaches such as deformable parts models 
detected objects using a sliding window and a classifier 
that ran over the entire image (Felzenszwalb, 2010). More 
recently, Girshick et  al. (2014) introduced region-based 
CNN (R-CNN) with improved performance in object 
detection. R-CNN can achieve approximately 47 frames 
per second (FPS) detection speed by considering sev-
eral regions of interest in the input image and classify-
ing those regions for containing target objects (Gandhi, 
2018). In the R-CNN architecture, independent fea-
tures are extracted from each region proposal sepa-
rately, resulting in a long processing time. To overcome 
this issue, faster variants of R-CNN were also proposed, 
including Fast R-CNN (Girshick, 2015) which is about 
213 times faster than R-CNN, Faster R-CNN (Ren et al., 
2017) which is about 250 times faster than R-CNN, and 
Mask R-CNN (He et  al., 2017). Later, more real-time 
detectors were proposed such as single shot detector 
(SSD) (Liu et  al., 2016) in which proposal generation is 
eliminated and anchor boxes and feature maps are pre-
defined. Similarly, the YOLO model was proposed by 
Redmon et al. (2016) in which bounding boxes and class 
probabilities are predicted in one round of image evalu-
ation using a single neural network. Comparing the 
performance and computation time of various object 
detection methods reveals that YOLO can perform in 
real-time with sufficiently high accuracy, while being 

less computationally expensive. Also, YOLO models 
can be easily converted to lighter versions, such as Tiny 
YOLO (Redmon et  al., 2016) which is ideal for launch-
ing on mobile devices, one of the future directions of this 
research, i.e., large-scale crowdsourcing of floodwater 
depth data collection and analysis.

3  Methodology
The following sections present detailed descriptions of 
the flood depth estimation technique, data preparation 
(including augmentation), model training and validation, 
and performance measurement.

3.1  Flood depth estimation using street photos of traffic 
signs

According to the manual on Uniform and Traffic Control 
Devices (Federal Highway Administration, 2004), stop 
signs installed in U.S. roads should have a standardized 
width and height of 30 in. (on single-lane roads) or 36 in. 
(on multi-lane roads and expressways). Since our scope is 
residential areas, the focus of this research is stop signs in 
single lane streets that are 30 in. in width and height. To 
estimate flood depth in a particular location (described 
by a unique longitude and latitude), paired photos of a 
single stop sign before and after a flood are needed. As 
shown in Fig.  1a, knowing the height of the octagonal 
shape of the stop sign in both pixels ( s ) and inches ( 30′′ ), 

Fig. 1 Flood depth estimation in a paired a pre-flood photo and b 
post-flood photo (base photo in (b) is courtesy of Erich Schlegel/
Getty Images)
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a constant ratio r corresponding to the number of inches 
per pixel in the pre-flood photo is calculated. Using this 
ratio, the full length of the pole in inches is determined 
as the product of r and the pole length in pixels ( p ). 
Similarly, in Fig. 1b, knowing the height of the octagonal 
shape of the stop sign in pixels ( s′ ) and inches ( 30′′ ), the 
number of inches corresponding to one pixel in the post-
flood photo is obtained as a constant ratio r′ . Using this 
ratio, the length of the visible parts of the pole (above the 
waterline) in inches is calculated by multiplying r′ and the 
pole length in pixels ( p′ ). It must be noted that ratios r 
and r′ may not necessarily be equal since pre- and post-
flood photos can be taken from different angles and dis-
tances from the stop sign.

3.2  Object detection model for pole detection
For visual recognition of stop signs and their poles, a 
robust and accurate object detection model is desired. 
Moreover, to implement the flood depth estimation tech-
nique on mobile devices, the model should be computa-
tionally light. To satisfy these two design conditions, we 
utilize YOLOv4 (Bochkovskiy et  al., 2020) for stop sign 
and pole detection. YOLOv4 is fast and accurate, and 
features a light version (a.k.a., Tiny YOLO) for imple-
mentation on mobile devices. Other object detection 
models such as RetinaNet-101–500 (Lin et  al., 2017a, 
b), R-FCN, SSD321 (Liu et  al., 2016), and DSSD321 (Fu 
et  al., 2017) achieve mean average precision (mAP) of 
53.1% (at 11 FPS), 51.9% (at 12 FPS), 45.4% (at 16 FPS), 
and 46.1% (at 12 FPS) on the Microsoft COCO dataset 
(Lin et al., 2014), respectively. By comparison, YOLOv3-
320, YOLOv3-416, and YOLOv3-608 models (Redmon 
& Farhadi, 2018) yield mAP of 51.5% (at 45 FPS), 55.3% 
(at 35 FPS), and 57.9% (at 20 FPS) on the same dataset, 
respectively. The term mAP is a metric used to evaluate 

the performance of object detection models, and higher 
mAP indicates higher accuracy of the model (Henderson 
& Ferrari, 2017; Robertson, 2008). YOLOv4 surpasses 
YOLOv3 in terms of speed and accuracy, by achieving 
65.7% mAP at 65 FPS on the Microsoft COCO dataset. 
This superior performance is primarily the result of using 
a different backbone in the YOLOv4 model. Particularly, 
the model utilizes the cross-stage-partial-connections 
(CSP) network with Darknet-53 (Wang et al., 2020) as the 
backbone for more efficient feature extraction. As shown 
in Fig.  2, this backbone extracts essential features from 
the input image, which are then fused in the neck of the 
YOLO model. The neck is comprised of layers that col-
lect feature maps from different stages. This part of the 
model consists of two networks, namely spatial pyra-
mid pooling (SPP) (He et al., 2015) and path aggregation 
network (PANet) (Liu et al., 2018). The neck consists of 
several top-to-bottom paths and bottom-to-top paths 
that better propagate layer information. Similar to the 
head of YOLOv3, the head of YOLOv4 adopts the fea-
ture pyramid network (FPN) (Lin et  al., 2017a, 2017b), 
predicts object bounding boxes, and outputs the coordi-
nates along with the widths and heights of detected boxes 
(Redmon and Farhadi, 2018) through three YOLO layers.

3.3  Pre‑trained model
The YOLOv4 model is pre-trained on the publicly 
available Microsoft COCO dataset to detect 80 object 
classes (Lin et  al., 2014). To train the adopted model 
on the target dataset in this study, transfer learning 
is used, which is a validated approach for training a 
CNN model on a relatively small dataset (a.k.a., tar-
get dataset) by transferring pre-defined weights (that 
the network has learned when trained on a large data-
set) to allow the model to detect relevant intermediate 

Fig. 2 The architecture of the YOLOv4 network adopted in this research
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features (Gao & Mosalam, 2018; Han et al., 2018; Hus-
sain et al., 2018; Tammina, 2019). The dataset used for 
training has images containing two classes: stop sign 
and pole. This reduces the output size of YOLO layers 
from 80 to 2 classes. Using transfer learning, all net-
work weights except those of the last three YOLO layers 
are kept constant (i.e., frozen). At the beginning of the 
training process, the weights of the three YOLO layers 
are randomly selected, and then constantly optimized 
with the goal of maximizing the mAP for pole and stop 
sign detections. At these optimal values, the model is 
neither overfitting (i.e., unable to detect objects in new 
data due to overly learned features in the training set 
and forgetting general features) nor underfitting (i.e., 
unable to detect objects in training data and new data 
due to limited features that were learned).

3.4  Clustering the training set
YOLO models use pre-defined anchor boxes, which are 
a set of candidate bounding boxes with fixed width and 
height initially selected based on the dataset, and sub-
sequently scaled and shifted to fit the target objects (Ju 
et al., 2019). The YOLOv4 model, in particular, utilizes 
nine anchor boxes. Therefore, all 1,262 ground-truth 
boxes in the training set (containing instances of both 
stop sign and pole classes), shown in Fig. 3a, are clus-
tered into nine groups using k-means clustering (k = 9) 
(Redmon and Farhadi, 2018). The centroids of these 
nine clusters are used to define nine anchor boxes, as 
illustrated in Fig. 3b.

3.5  Training the model
Following Bochkovskiy (2020), the adopted YOLOv4 
model is trained for 4,000 iterations (2,000 iterations 
for each class), with a learning rate of 0.001 using Adam 
optimizer (Kingma & Ba, 2014), with a batch size of 1 
and subdivision of 64. The Darknet-53 (backbone of this 
model) is built in Windows on a Lenovo ThinkPad laptop 
computer with 7 cores, 9750H CPU, 16  GB RAM, and 
Nvidia Quadro T1000 GPU with a 4  GB memory. The 
network resolution (i.e., image input size) is reduced to 
the size of 320× 320× 3 to lower computational cost and 
time. The total processing time for training the model is 
approximately 12 h, with an average loss of 0.567.

Random and real-time data augmentation is auto-
matically applied to the training set to increase the size 
of training data by creating slightly modified copies of 
existing images. Past studies have investigated various 
approaches to data augmentation. In particular to the 
YOLO architecture, Kang et al. (2019) changed the hue, 
saturation and exposure of images for training a Tiny 
YOLO model to detect fire. Ma et  al. (2020) applied 
color jittering and saturation, exposure, and hue change 
for augmenting images of thyroid nodules for training a 
YOLOv3 model. Koirala et al. (2019) augmented images 
of fruits for training a YOLO model by modifying hue, 
saturation, jitter and multiscale. Lastly, Niu et al. (2020) 
applied image mosaic, horizontal flipping, and image 
fusion for augmenting images of sanitary ceramics for 
training a Tiny YOLO model. In this study, hue, satura-
tion, and exposure of training samples are changed within 
[-18… + 18], [0.66…1.5], and [0.66…1.5], respectively as 
recommended by Bochkovskiy et  al., (2020). Also, a Jit-
ter (random image cropping and resizing by changing the 

Fig. 3 a Nine clusters (k = 9) corresponding to the training set, and b Recalculated anchor boxes for the in-house dataset



Page 7 of 19Alizadeh and Behzadan  Computational Urban Science            (2023) 3:17  

aspect ratio) of 0.3 is implemented for data augmenta-
tion. The maximum jitter allowed in data augmentation is 
0.3 (Ma et al., 2020). Moreover, 50% of images are flipped 
horizontally but no image is flipped vertically (Hu et al., 
2020). Lastly, 50% of images are augmented with a mosaic 
by combining four different images into one image (Hao 
& Zhili, 2020).

3.6  Validating the model
To prevent overfitting (i.e., a model that is exactly fitted 
to the training data, preventing it from correctly detect-
ing new data), model performance is monitored on vali-
dation sets using a fivefold cross validation approach 
(Browne, 2000; Islam et al., 2020; Lyons et al., 2018; Seyr-
far et al., 2021). Using this approach, 160 photos are ran-
domly drawn (without replacement) from the training 
set (20% of the total of 800 images in the training set) for 
five times as validation sets, and the remaining photos 
are used for model training. The model is then trained on 
each training set for 4,000 iterations and validated on the 
corresponding validation set. The number of epochs is 
the number of iterations divided by the number of images 
over the batch size. With the batch size of 1, there are a 
total of 5 epochs in 4,000 iterations. During the training 
process, the highest mAPs on the validation sets along 
with the corresponding number of iterations are saved. 
Next, average performance is calculated as the average of 
obtained mAP values across all validation sets. The opti-
mum number of iterations is also computed as the aver-
age of the best number of iterations (corresponding to the 
highest mAP) in all validation sets. In this study, the aver-
age mAP and average iteration numbers achieved in five-
fold cross validation are 97.04% and ~ 3,000 (since model 
weights are saved at every 1,000 iterations, the optimum 
number of iterations is rounded to 3,000 to be exact). 
This means that after 3,000 iterations, the model shows 
a tendency to overfit to the training data. Ultimately, the 
model is trained on the entire training and validation 

sets for the obtained optimum number of iterations (i.e., 
3000), and the mAP at  3000th iteration is reported. The 
set of network weights saved at this number of iterations 
is marked as optimum and used for testing the model. 
Table 1 shows the validation output of the trained model 
on each validation set.

3.7  Tilt correction
Over time or as a result of floodwater flow, traffic signs 
can be tilted in any direction, leading to the underestima-
tion of the submerged pole height by the YOLOv4 model 
(since detected bounding boxes are not tilted), and even-
tually erroneous floodwater depth calculation. In cases 
where both pre- and post-flood photos are tilted by the 
same angle, floodwater depth calculation is not impacted 
by the tilt. However, if the degrees of tilt differ between 
pre- and post-flood photos of the stop sign, pole length 
estimation should be adjusted prior to calculating the 
floodwater depth. In Fig. 4, pre-flood and post-flood stop 
signs are presented with unequal tilt degrees (α degrees 
for pre-flood stop sign and β degree for post-flood stop 
sign). For each photo, the actual pole length is the reverse 
projection of the height of the detected bounding box ( P 
and P′ ) by the degree of tilt (α and β). Eq. 1 presents the 
calculation of flood depth considering unequal degrees of 
tilt for a given paired stop sign photo.

To automatically detect the degree of sideways tilt, a 
tilt correction technique is implemented and applied 
before stop sign and pole detection. By visually inspect-
ing the photos in the dataset, it is observed that the maxi-
mum tilt does not exceed 25º. Thus, we select a range of 
[-25º… + 25º] for tilt correction. Next, as shown in Fig. 5, 
the input image is rotated from 0 to -25º clockwise (in 
5º intervals) and from 0 to + 25º counterclockwise (in 5º 

(1)W = P
cos α

cos β
− P′

Table 1 The highest average performance of the trained model on five validation sets using fivefold cross validation (S: Stop sign; P: 
sign pole; S + P: stop sign and sign pole)

Metric Class Validation set Average of 
5 validation 
sets1 2 3 4 5

Average IoU S + P 83.74% 85.05% 86.82% 85.92% 84.75% 85.26%

Precision @ 0.25 conf S + P 95.00% 97.00% 97.00% 96.00% 97.00% 96.40%

Recall @ 0.25 conf S + P 94.00% 97.00% 96.00% 95.00% 94.00% 95.20%

AP S 97.37% 97.37% 97.37% 97.37% 97.37% 97.37%

P 97.37% 97.37% 97.37% 97.21% 94.20% 96.70%

mAP @ 0.50 S + P 97.37% 97.37% 97.37% 97.29% 95.78% 97.04%

No. of iterations S + P 3,000 3,500 2,800 3,500 2,400 3,025
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Fig. 4 Adjusting flood depth estimation for pre-flood and post-flood stop signs with unequal degrees of tilt

Fig. 5 Tilt detection approach (base photo is courtesy of KjzPhotos/Shutterstock)
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intervals). Generated images are then processed by the 
trained YOLO model for stop sign and pole detection. 
The image with the minimum width of the pole detection 
bounding box is ultimately selected as the one contain-
ing the most vertical pole. Consequently, the degree of 
tilt that was applied to the original image to generate this 
image is calculated as the tilt angle (β degrees for pre-
flood stop sign and α degree for post-flood stop sign).

3.8  Model performance
In object detection, a commonly used metric for measur-
ing model performance is mAP (Ren et al., 2017; Turpin 
& Scholer, 2006). The basis of mAP calculation across all 
classes is the average precision (AP) for each individual 
class. In turn, the AP for any given class is measured 
using intersection over union (IoU) (Javadi et  al., 2021; 
Kido et al., 2020; Nath & Behzadan, 2020), which is cal-
culated for each detection based on the overlap between 
the predicted bounding box ( B′ ) and the ground-truth 
bounding box ( B ) (Eq.  2). Following this, the detected 
object is classified as correct (if the IoU is above a pre-
defined threshold, typically 50%), or incorrect (if the IoU 
is below the threshold) (Alizadeh & Behzadan, 2022b; 
Alizadeh et al., 2022; Nath & Behzadan, 2020; Zhu et al., 
2021). Based on the correctness of the detected object, 
true positive (TP; correct classification to a class), false 
positive (FP; incorrect classification to a class), and false 
negative (FN; incorrect classification to other classes) 
cases are counted. Next, Eq. 3 and Eq. 4 are used to cal-
culate precision (model’s ability to detect only relevant 
objects) and recall (model’s ability to detect all relevant 
classes) based on TP, FP and FN for each class (Guo 
et al., 2021; Mao et al., 2021; Padilla et al., 2020; Xu et al., 
2021). It must be noted that true negative cases are not 
considered in object detection when measuring model 
performance, as there are countless number of objects 
(belonging to a large number of classes) that should not 
be detected in the input image (Padilla et al., 2020).

To calculate the AP of any object class, all detections 
are initially sorted based on their confidence scores in 

(2)IoU =
B′

∩ B

B′ ∪ B

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

descending order, and Eq. 5 is then applied. In this Equa-
tion, N  refers to the total number of detected bounding 
boxes, i refers the rank of a particular detection in the 
sorted list, Pi refers to the precision of the i th detection, 
and �r is the change in recall between two consecutive 
detections i th and (i + 1) th. Finally, mAP is calculated 
as the average precision over all classes, as formulated by 
Eq. 6 (Lyu et al., 2019; Nath & Behzadan, 2020).

3.9  Flood depth estimation
Flood depth is estimated using the YOLOv4 model 
trained on photos of stop signs taken before and after 
flood events. The general framework for detecting stop 
signs and their poles in pre- and post-flood photos and 
estimating flood depth is illustrated in Fig. 6. As shown 
in this Figure, paired pre-flood and post-flood photos of a 
stop sign are processed by presenting them to the model 
as two separate inputs. The model then detects the stop 
sign and its pole in each image, and measures the length 
of the visible part of the detected poles using geometric 
calculations based on the size of stop signs (Sect.  3.1). 
Next, the depth of floodwater at the location of the stop 
sign is estimated as the difference between pole lengths 
in pre- and post-flood photos.

In addition to evaluating the model performance 
in stop sign and pole detection, its ability to estimate 
flood depth must be assessed. The literature in this field 
has used MAE as an informative metric to describe 
the discrepancy in flood depth estimation (Chaudhary 
et  al., 2019; Cohen et  al., 2019; Park et  al., 2021; Aliza-
deh Kharazi and Behzadan, 2021; Alizadeh et al., 2021). 
In this study, the error of pole detection in pre-flood 
and post-flood photos is determined as the difference 
between ground-truth pole length ( lg ) and detected pole 
length ( ld ). The absolute error in a single image is then 
calculated as the cumulative error in pre-flood and post-
flood photos. Since we measure the depth of flood based 
on the difference between pole lengths in M paired pre- 
and post-flood photos, the MAE for flood depth estima-
tion can be determined as the average of absolute errors 
in all paired photos (Eq. 7).

(5)AP =
1

N

∑N
i=1

Pi
�

ri

(6)mAP =
∑N

i=1
APi

(7)
MAE =

1

M

∑M
1

∣

∣

∣

(

lg pre − ldpre

)

+

(

lg post − ldpost

)∣

∣

∣
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4  Data description
Table 2 shows a detailed breakdown of the image data-
sets used to train and test the model. The data used for 
training the adopted YOLO model to detect stop signs 
and sign poles consists of two image datasets: pre-
flood photos and post-flood photos. Each dataset is 
described in detail in the following sections. The data 
used for testing the YOLO model comprises 176 pre-
flood and 172 post-flood photos drawn from the Blu-
pix v.2021.1 dataset (containing 224 pairs of pre- and 
post-flood photos, i.e., 448 photos in total), by filtering 
out photos with very low resolution or those in which 
entire poles are not captured. The Blupix v.2021.1 
dataset is an expanded version of the Blupix v.2020.1 
(Alizadeh Kharazi & Behzadan, 2021) which contained 
186 pairs of pre- and post-flood photos; i.e., 372 pho-
tos in total.

4.1  Pre‑flood training dataset
There are publicly available large-scale datasets contain-
ing images of stop signs. The pre-flood training data-
set is generated by extracting a subset of photos of stop 
signs with the entire stop sign poles in the photo from 
the Microsoft COCO dataset (Lin et  al., 2014). Figure  7 
shows examples of stop sign photos in different countries, 
with different forms and pole shapes, extracted from the 
Microsoft COCO dataset. Although all stop sign objects 
were already annotated in the Microsoft COCO dataset, it 
was found that some annotations were not as accurate as 
expected. For example, shapes of masks drawn over stop 
signs were not always octagonal. To resolve this prob-
lem, all extracted images were re-annotated by a trained 
annotator. Ground-truth bounding boxes were deter-
mined by manual labeling, e.g., outlining stop signs and 
poles by polygons using LabelMe software (Wada, 2016). 
Although annotating images with rectangular bounding 
boxes was sufficient for implementing the YOLO model, it 

Fig. 6 Workflow for estimating flood depth in a sample paired pre- and post-flood photos (base post-flood photo is courtesy of Erich Schlegel/
Getty Image)

Table 2 Overview of the training and test datasets

Subset Source Language Count Total

Training set (Blupix 
v.2021.2)

Post-flood Web-mining English 196 800

Spanish 6

French 55

Turkish 13

Synthetic English 64

Non-labeled English 61

Pre-flood COCO English, Spanish, French, Turkish, 
Arabic, etc

334

Non-labeled English 71

Test set (Blupix v.2021.1) Post-flood Web-mining English 164 348

French 8

Pre-flood Web-mining English 168

French 8
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was ultimately decided to annotate using masks to achieve 
more accurate shapes (octagonal masks over stop signs 
and quadrilateral masks over sign poles) and to facilitate 
the generalizability of the annotations for future stud-
ies. At the conclusion of the annotation step, all masks 
were converted to bounding boxes which is the required 
input format of the YOLO model. Sample annotated pre- 
and post-flood photos are shown in Fig. 8. These photos 
depict a stop sign at the intersection of Tumbling Rapids 
Dr. and Hickory Downs Dr. in Houston, Texas. The post-
flood photo was obtained via crowdsourcing after Hurri-
cane Harvey in (2017), and the pre-flood photo was taken 
by the authors on January 23, 2021.

4.2  Post‑flood training dataset
For post-flood photos, an in-house dataset is created 
which contains 270 web-mined photos of flooded stop 
signs. Web-mining is conducted using related keywords 
such as “flood stop sign”, “flood warning sign”, and their 
translations in three other languages (i.e., Spanish, 
French, Turkish). To increase the generalizability of the 

model, we also include photos taken from the back side 
of the sign, those depicting tilted poles or reflections in 
water, as well as photos taken in daylight or nighttime, 
photos with clear or noisy backgrounds, and photos 
taken in different weather conditions. Additionally, to 
minimize detection error, the dataset is further balanced 
by generating synthetic training data (Feingersh et  al., 
2007; Hu et al., 2021; Tremblay et al., 2018; Shaghaghian 
& Yan, 2019; Nazari & Yan, 2021). In particular, a new set 
of post-flood photos depicting flooded traffic signs (other 
than stop signs) is imported in a photo editing tool where 
the depicted traffic signs are replaced with stop signs 
(keeping the pole unchanged). Using this method, 64 
synthetic images are added to the dataset which results in 
a total of 334 post-flood photos.

4.3  Non‑labeled objects
Since the model is trained on stop signs in different lan-
guages (with white text on a red octagonal shape), it 
could learn overly detailed features that may not be gen-
eralizable, resulting in potentially false positive cases. To 

Fig. 7 Photos of various stop signs in different forms and languages available from the Microsoft COCO dataset
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resolve this problem, the training set is further enriched 
with samples that are visually proximal to stop signs but 
are not stop signs, to force the model to learn distinctive 
characteristics specific to stop signs while avoiding false 
positives. In particular, 71 web-mined pre-flood photos 
and 61 web-mined post-flood photos of other traffic signs 
similar to stop signs (such as “Do Not Enter” signs) are 
added to the training dataset.

5  Results and analysis
5.1  Performance of the trained model
In this section, the performance of the trained YOLOv4 
model is evaluated on the test dataset, and results are dis-
cussed. For the test set, we extracted 176 pre-flood and 
172 post-flood photos from the Blupix v.2021.1 dataset 
by filtering out photos with significantly low resolution 
or those in which parts of poles and/or stop signs were 
not visible. Of these pre- and post-flood photos, 163 pho-
tos are paired. Table  3 summarizes model performance 
with the optimum trained weights when tested on the 
test set. As shown in this Table, the AP calculated for 
stop sign and pole detection in pre-flood photos is 100% 
and 99.41%, respectively. Similarly, the AP calculated 
for stop sign and pole detection in post-flood photos is 
99.73%, and 98.73%, respectively. The mAP for pre- and 
post-flood photos is 99.70% and 99.23%, respectively. The 
relatively higher mAP for pre-flood photos can be attrib-
uted to less noise in these photos compared to post-flood 
photos. The average detection times for all detections 

in pre-flood and post-flood photos are 0.05 and 0.07  s, 
respectively, which is close to real-time.

Without considering the uneven degrees of tilt 
for few paired photos, the model can calculate pole 
lengths in test images with an MAE of 1.856 in. and 
2.882 in. for pre- and post-flood photos, respectively. 
The slightly higher error corresponding to post-flood 
photos can be primarily attributed to the presence of 
visual noise in post-flood scenes. To examine the tilt 
correction method, 37 images of stop signs in the test 
set with uneven pole tilt degrees in pre- and post-flood 
photos are identified. After implementing the tilt cor-
rection technique, the MAE of the trained YOLOv4 
model on the Blupix v.2021.1 dataset is reduced to 
1.723 in. and 2.846 in. for pre- and post-flood photos, 
respectively, showing a slight improvement in flood 
depth estimation outcome as a result of implementing 
the tilt correction technique. However, it is anticipated 
that with more paired photos depicting uneven degrees 
of tilt, the reduction in error becomes more signifi-
cant. Table  4 summarizes model performance on the 
test set. To calculate the error of flood depth estima-
tion, ground-truth floodwater depth (i.e., the difference 
between ground-truth pole lengths in paired pre- and 
post-flood photos) is compared with the estimated 
floodwater depth (i.e., the difference between detected 
pole lengths in paired pre- and post-flood photos). The 
MAE of the model for flood depth estimation on 163 
paired photos were achieved as 4.737 in. and 4.710 in. 
before and after implementing the tilt correction tech-
nique, respectively.

5.2  Pole length estimation using baseline methods
In addition to assessing the performance of the trained 
YOLOv4 model using metrics such as MAE and RMSE, 
we compare model performance with two baseline 

Fig. 8 Sample annotated a pre-flood photo, and b post-flood photo 
(base photo in (b) is courtesy of Erich Schlegel/Getty Images)

Table 3 Performance of the trained model in detecting stop 
signs and poles in pre- and post-flood photos of the test set (S: 
Stop sign; P: sign pole; S + P: stop sign and sign pole)

Metric Class Pre‑flood
(n = 176)

Post‑flood
(n = 172)

All photos
(n = 348)

Average IoU S + P 93.85% 86.25% 90.05%

Precision @ 0.25 conf S + P 0.99 0.94 0.96

Recall @ 0.25 conf S + P 0.99 0.95 0.97

AP S 100.00% 99.73% 99.84%

P 99.41% 98.73% 99.16%

mAP @ 0.50 S + P 99.70% 99.23% 99.50%

F1-score S + P 0.99 0.94 0.97

Average detection time 
(sec)

S + P 0.05 0.07 0.05



Page 13 of 19Alizadeh and Behzadan  Computational Urban Science            (2023) 3:17  

approaches (a.k.a., dummy methods). The purpose of 
these dummy methods is to verify that the performance 
of the YOLOv4 model exceeds that of a simple model 
that returns average values given a set of pole length 
values. In dummy method I, for a given pre-flood (post-
flood) test image, the model returns the average pole 
length of all pre-flood (post-flood) images in the train-
ing set. The average pole length for pre-flood and post-
flood photos in the training set is 76.98 in. (n = 334) and 
53.38 in. (n = 395), respectively. Using dummy method I, 
the MAE for the pre-flood photos and post-flood photos 
in the test set is thus determined as 44.628 in. (n = 176) 
and 49.804 in. (n = 172). In dummy method II, for a given 
pre-flood (post-flood) test image, the model returns the 
running average pole length of all previously seen pre-
flood (post-flood) images in the test set. Running aver-
age is a common method for extracting an overall trend 
from a list of values, by continuously updating an aver-
age value considering all data points in the set until the 
calculation point (Crager & Reitman, 1991; Du et  al., 
2008; Pierce, 1971; Tan et al., 2021). To reduce the order 
effect and allowing for a thorough examination of the 
variability and accuracy of the model across a range of 
randomized data sets, pole length values are recorded 
in 100 iterations each containing a randomized order of 
test images. Consequently, the performance of dummy 
method II is calculated as the MAE of all 100 obtained 
running averages. The MAE achieved for dummy method 
II for pre-flood and post-flood photos is 13.271 in. and 
20.469 in., respectively. Also, the minimum and maxi-
mum MAE achieved for pre-flood (post-flood) is found 
to be 0.056 in. and 42.830 in. (0.344 and 45.824), respec-
tively. Our results show that dummy method II is able to 
reduce the pole length estimation error to less than 1 in. 
in only one randomized set. However, dummy method II 
outperforms dummy method I, yet is highly sensitive to 
the order of values. Comparing the MAE of the proposed 
YOLOv4 model, (i.e., 1.723 in. for pre-flood photos and 
2.846 in. for post-flood photos) with the MAEs of dummy 

methods I and II, it is clear that our proposed model out-
performs the two baseline methods. Table 5 summarizes 
the MAE and RSME obtained using dummy methods I 
and II.

5.3  Impact of stop sign language on model performance
To analyze the performance of the model in different lan-
guages, MAE and RMSE values are calculated for various 
subsets of photos (after implementing tilt correction), 
with results summarized in Table  6. The analysis indi-
cates that in pre-flood photos, the MAE for stop signs 
in French is 4.628 in., which is higher than the MAE of 
1.585 in. for stop signs in English. On the other hand, in 
post-flood photos, the MAE for stop signs in French is 
1.565 in., which is lower than the MAE of 2.908 in. for 
stop signs in English. Further investigation reveals that 

Table 4 Performance of the trained model in estimating pole lengths in pre- and post-flood photos of the test before and after tilt 
correction

Source Metric Pre‑flood
(n = 176)

Post‑flood
(n = 172)

Paired 
photos 
(n = 163)

Before tilt correction RMSE (in.) 3.924 5.557 7.847

MAE (in.) 1.856 2.882 4.737

Average processing time (s) 0.05 0.08 0.08

After tilt correction RMSE (in.) 3.355 5.544 7.857

MAE (in.) 1.723 2.846 4.710

Average processing time (s) 0.05 0.08 0.08

Table 5 Performance of dummy methods I and II on the test set

Baseline method Category (test 
set)

MAE (in.) RMSE (in.)

Dummy Method I Pre-flood (n = 176) 44.628 51.884

Post-flood (n = 172) 49.804 60.165

Dummy Method II Pre-flood (n = 176) 13.271* * MAE reported over 
100 randomized 
iterations

Post-flood (n = 172) 20.469*

Table 6 The performance of the flood depth estimation model 
based on stop sign language

Category Language MAE (in.) RMSE (in.)

Pre-flood English (168) 1.585 3.078

French (8) 4.628 6.977

Total (176) 1.723 3.355

Post-flood English (164) 2.908 5.662

French (8) 1.565 1.876

Total (172) 2.846 5.544
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the MAE for pole length estimation is impacted by image 
quality rather than stop sign language. For example, web-
mined post-flood photos of stop signs in French language 
are in high-resolution (taken by professional cameras), 
thus lowering the corresponding MAE. In contrast, the 
quality of one of the French pre-flood photos was sig-
nificantly low which led to a higher MAE for pole length 
estimation in the corresponding subset.

5.4  Benchmarking
As stated earlier, the model achieved an MAE of 4.710 
in. on 163 paired images in the test set after imple-
menting tilt correction. By comparison, Cohen et  al. 
(2019)  obtained an average absolute difference of 
18–31 cm (approximately 7–12 in.) for flood depth esti-
mation in coastal and riverine areas,  Chaudhary et  al. 
(2019) reported a mean absolute error of 10 cm (approx-
imately 4  in.) in estimating flood depth based on com-
paring submerged objects in social media images with 
their predefined sizes, and Park et  al. (2021)  presented 
a mean absolute error value of 6.49  cm (approximately 
2.5 in.) by comparing visible parts of submerged vehicles 
with their estimated size. As summarized in Table  7, a 
comparison of the flood depth estimation error obtained 
in this research to previous studies indicates the reli-
ability and generalizability of the developed technique in 
measuring floodwater depth with acceptable accuracy.

6  Summary and conclusion
Flooding is one of the most prevalent natural hazards 
that results in significant loss of life, and disrupts prop-
erties and infrastructure. Due to the constant change in 
water levels on the road network during a flood, reliable 
and real-time flood depth information at the street level 
is critical for decision-making in evacuation and rescue 

operations. Current methods of obtaining flood depth 
(including water gauges, DEMs, hydrological models, and 
SAR) often suffer from shortage of data, inherent uncer-
tainties, high installation and maintenance costs, and the 
need for heavy computing power. Recent advancements 
in computer vision and AI have created new opportu-
nities for remotely estimating the flood depth based on 
comparing submerged objects with their predefined 
sizes. In this paper, a deep learning approach, based on 
the YOLOv4 architecture, was proposed for estimating 
floodwater depth in crowdsourced street photos using 
traffic signs. Since traffic signs have standardized sizes, 
the difference between pole lengths in paired pre- and 
post-flood photos of the same sign can be computed and 
used as the basis for estimating the depth of floodwater 
at the location of the sign. An in-house training set com-
prising web-mined photos and photos extracted from 
the Microsoft COCO dataset, was used for training the 
YOLOv4 model. The trained model was then validated 
using fivefold cross validation, and subsequently tested 
for flood depth estimation on 163 paired photos from 
our in-house test set. Results indicate an MAE of 1.723 
and 2.846 in. for pole length estimation in pre- and post-
flood photos, respectively, and an MAE of 4.710 in. for 
floodwater depth estimation. Also, the performance 
of the proposed model surpassed that of two baseline 
approaches (dummy method I, which returns the aver-
age pole length of all images in the training set for each 
image in the test set; and dummy method II, which calcu-
lates the running average of pole lengths in all previously 
seen images in the test set). In addition, a tilt correction 
method was developed to minimize the pole length esti-
mation error in paired photos of stop signs with uneven 
degrees of tilt. As a part of the future direction of this 
research, the authors aim to increase the generalizability 

Table 7 Comparison of the results of this study with the literature on floodwater depth estimation

Study MAE Method Practical Considerations

Cohen et al. (2019) 18–31 cm (7–12 in.) Augmenting DEM data for Coastal and riverine 
areas

Challenges in obtaining high-spatial-resolution 
DEMs, high uncertainty in highly fragmented 
flooded areas

Chaudhary et al. (2019) 10 cm (4 in.) Submerged objects in social media images with 
their predefined sizes

Assuming predefined sizes for different objects

Park et al. (2021) 6.49 cm (2.5 in.) Flooded vehicle images in ground-level view Finding submerged vehicles, assuming predefined 
sizes for different vehicles

Alizadeh Kharazi and 
Behzadan (2021)

12.65 in. (32.13 cm) Paired stop signs in crowdsourced photos, using 
pre-trained Mask R-CNN and line detection mod-
els. Tested on Blupixv.2020.1 dataset

Computationally not efficient, challenges in pairing 
photos

This paper 4.710 in. (11.96 cm) 
after tilt correction
[4.737 in. (12.03 cm) 
before tilt correc-
tion]

Paired stop signs in crowdsourced photos, using 
a trained YOLOv4 model on an in-house dataset. 
Tested on Blupix v.2021.1 dataset

Relies on citizen science as a means for data col-
lection
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of the floodwater depth estimation model by training it 
on various forms of traffic signs and other standardized 
urban landmarks. Moreover, to evaluate the real-world 
performance and practicality of the proposed methodol-
ogy, the authors are conducting a user study of people’s 
perception of risk during flood events and the value of 
information provided by the proposed flood depth esti-
mation method on their decisions.
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FEMA  Federal Emergency Management Agency
FN  False negative
FP  False positive
FPN  Feature pyramid network
FPS  Frames per second
IoU  Intersection over union
LiDAR  Light detection and ranging
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